

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 17
Wednesday 6-1-2021

Chapter 4 (4.3 to 4.4.1)
File Systems

File System Implementation
● Users are interested in naming files, operations,

directory trees … etc.
● Implementors (YOU) are interested in how to

store, disk space management, efficiency and
reliability … etc.
– This is what will be discussed now.

File System Layout
● Disks -usually – are divided into partitions, each with its own file system.
● MBR (Master Boot Record): on sector 0.

– Used to boot the computer.

● The end of MBR contains partition table.
– Contains start and end of each partition.
– One of partition is marked active.

● When the computer boots:
– BIOS reads in and executes MBR,
– Which locates the active partition and reads in its 1st block: boot block, and executes it,
– In which exists the program that loads the OS stored on that partition.

● Every partition contains a boot block:
– Uniformity.
– It might get one in the future.

File System Layout cont.

● The layout varies from a file system to another.
● Superblock: contains all key parameters about FS.

– Read into memory at 1st use (may be at boot).
– May contain: magic number for FS type, # of blocks … etc.

● Free blocks: bitmap or pointers list.
● I-node: one/file, info about the file.

Implementing Files
● Important: manage which disk blocks go with

which files.
● Different methods.

Contiguous Allocation

● Each file occupies a contiguous (integer) number of blocks.
● Each file starts at a new block.
● Advantages:

– Simple to implement: first block, # of blocks.
– Fast to read: only one seek at the 1st block.

Contiguous Allocation

● Disadvantage: Fragmentation over time.
● Initially not a problem, but gets worse with time.
● Solutions:

– Compaction: may take hours or even days.
– Use holes: must keep track of holes and know the final size of file in advance.

● Imagine that word asks you to specify the exact size before starting!

● Acceptable with CD-ROM: files known in advance, read only.
– Was used in magnetic disk, then abandoned for its problems, then used again in CD-ROM.

Linked List Allocation
● First word is a next pointer.
● No external fragmentation.
● Store only 1st block address in

directory.
● Disadvantage:

– Random access is very slow.
– Data size in a block not a power of 2:

programs reading in units of block
need to concatenate from 2 blocks →
more overhead.

Linked List Allocation using A table in Memory

● Put pointers in a table in memory: FAT
(File Allocation Table)

● Entire block used for data.
● Still need to follow the chain, but faster in

memory.
● The directory just keeps the starting

block number.
● Disadvantage: tables must stay in

memory all the time. 1TB disk with 1KB
block → 1GB entries.
– Does not scale well.

I-nodes
● I-node (index-node) data structure per

file.
● In memory only when the file is open.

– If i-node size = n, and k files open → only
kn memory needed.

– Size proportional to # of open files, not disk
size.

– If the file grows larger than i-node size limits
→ reserve last disk address to point to
another block that holds addresses.

● More levels scheme is possible.
● More last reserved addresses also is possible.

Implementing Directories
● To read a file, open it.
● To open a file, path name is used to locate directory

on disk.
● Directory entry provides info to locate file disk blocks.
● Directory system: map ASCII file name into info to

locate its blocks.

Implementing Directories - Attributes

● Simple option: in directory entry.
● List of fixed size entries: fixed size

name, attributes, address(es).

● Where to store file attributes?

● Another option: in i-node.

Implementing Directories – Supporting Long File Names

● With fixed size directory entries, long file names
represent a problem.

● Limit file name length : 255 characters, reserve
that much length for name in one of the prev.
schemes.
– Simple but wastes disk space with short file names,

which are the majority.

Implementing Directories – Supporting Long File Names

● Each entry:
– fixed portion (size of entry, attributes such as

owner, creation date … etc.)
– Followed by file name however its length, ending

with a special character, padded to align entries
with words.

● Disadvantages:
– Fragmentation with file delete: acceptable

because compaction is feasible here.
– A single entry may span multiple pages → page

fault while reading file name.

Implementing Directories – Supporting Long File Names

● Fixed length entries, followed by
a heap of file names.

● No fragmentation in entries.
● No padding needed.
● Still need heap management,

and page faults can occur.

Implementing Directories – Lookup time

● Files are searched sequentially from the directory beginning →
slow lookup.

● One solution: use a hash table.
– Faster lookup.
– More complex administration.
– Used only with large directories.

● Another solution: cache search results.
– Useful only when there is locality in file search.

Skipped
● Sections 4.3.4, 4.3.5, 4.3.6 and 4.3.7.

File System Management and Optimization

● How to make FS work efficiently and robustly?

Disk Space Management
● As contiguity is not usually feasible, almost all FSs chop files into blocks.
● Block size:

– Too large → wastes space
– Too small → wastes time

● A study about file sizes:
– 59.13% of all files at the VU were 4 KB or smaller and 90.84% of all files were 64

KB or smaller. The median file size was 2475 bytes.
● 1KB block → 30% to 50% of files in single block.
● 4KB block → 60% to 70% of files in single block.

– 93% of the disk blocks are used by the 10% largest files.
● Waste in small files is negligible.

Study Results

Disk Space Management
● Smaller blocks → more blocks/file → more transfers → slower.
● Ex: A disk with 1MB/track, 8.33 msec rotation time, avg 5msec

seek time. To read a k bytes block:
– 5 + 4. 165 + (k/1000000) × 8. 33

● A study about block sizes vs data rate and vs space utilization:
– Assume file size of 4 KB

● With larger disks currently, space is not a limitation, prefer
wasting space.

Study Results

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

