OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 5
Thursday 5-11-2020

Chapter 2 (2.2.4 to 2.3.2)

Processes and Threads

User Space Threads

* Thread library entirely in user space, kernel has no idea.

* Can be implemented for an OS with no thread support. (the only type in old
days)

Process Thread
* Threads run on top of run-time system \ /
(a collection of procedures) i \

* Each process has a thread table managed

by the run-time system. S%Zi;< é é é é
Table (PC, SP, REGs, state, ...etc)

=
* At thread switch, thread calls run-time that
handles switching to another ready thread. O
This is much faster than calling the kernel Space{ / Kernel
(advantage). / \\
- May have 1 inst. To save/load all registers at one < Run-time Thread Process

system table table

User Space Threads (cont.)

* Advantages:
- Can be implemented for an OS with no thread support.

- No trap, no context switch, no memory cache flush, ...
etc at thread switch, just a local procedure.

— Customized scheduling algorithms per process (ex.
Garbage collection thread)

— Scale better (no kernel space needed)

User Space Threads (cont.)

* Problems:

— Blocking system calls (If a thread blocks, the entire process will block)
* Change the read to non-blocking, requires OS changes, undesirable, plus changing other programs.
» Select call checks if the read will block (a jacket or a wrapper). Not very elegant way, changes the
system call library.
- Page faults (similar to the prev.)

— The thread must yield voluntarily (no clock interrupts, no round-robin)
* Run-time system require periodic clock interrupts (messy, overhead, possible interference with another
thread requiring clock interrupt.)

— The biggest problem: programmers use threads mostly for applications with a lot of
(blocking) system calls. If already trapped to OS, the thread switch work is negligible. If the
thread is CPU bound, what’s the point?

Kernel Space Threads

- Thread creation and destruction are Fluese Thisad
system calls, reflected on the thread \ /
table, managed by the kernel itself \

(no run-time).

 All blocking calls are system calls with
greater cost.

* At thread block, the kernel chooses another
thread either from the same process or from

another one.
Kernel E
- To decrease costs, OS recycle threads (not eme 7 .
runnable thread reactivated) |
- Recycling possible but not worth it in user level threa Process Thread

table table

Kernel Space Threads (cont.)

* Problems:

- What happens with fork?
 If exec is coming, then 1 thread, otherwise duplicate.
— Signals are delivered to processes. Which thread
receives a signal?

* The interested thread registers. But what if more than
one thread register?

Hybrid

Multiplex user level threads on top of kernel level ones.

Program chooses how many threads on both levels.

The most flexible.
Kernel only knows and schedules ke

Multiple user threads
on a kernel thread

\

threads. Multiple level threads
may be multiplexed on top of them.

User level threads are managed
like pure user level threads.

Each kernel thread has a set of

user threads switching to use it. Kerne

S S*— Kernel thread

User
> space

Kernel
space

Scheduler Activations

* Approach by Anderson et al. (1992) to improve
the slowness of kernel level threads.

* Challenging bonus explained next online lecture
by one of you. (for reading only).

- Hint: read the related paper.

Pop-up Threads

* Another bonus, similar to the previous (Are
there any related papers?)

From Single-threaded to Multi-
threaded

* EXxisting programs usually written to be single-
threaded. Converting them is tricky.

* We will see some example problems.

Thread Globals

* Need for a thread global scope. Ex: errno.
* Prohibit globals!! What about existing SW?

* Private global area/thread — new scoping
level + procedure local and program global.

Thread 1's
code

Thread 1 Thread 2

Thread 2's
code

é

Access (errno set)

Thread 1's
stack

%

-— Time

Thread 2's
stack

1 /
Open (errno overwritten) <

Thread 1's
globals

é

;

Thread 2's
globals

Errno inspected

Thread Globals (cont.)

 How to access those areas? Programming languages do
not know how to express this new scope.
— Allocate a chunk of memory /thread and pass to each procedure.
Not elegant but works.
— New library procedures:

e create _global("bufptr"); //inthe heap or special area dedicated
for the calling thread

e set global("bufptr", &buf);
* bufptr = read global("bufptr");

Non-reentrant Procedures

* Examples:
- Sending messages over the network through a buffer.
— Malloc: updating memory usage tables (free chunks linked list)

* Rewriting entire library — not trivial, may introduce
errors.

* A jacket for each procedure (in use bit) blocking multi-
access to the same procedure. - Limits parallelism.

Signals

* Some signal are thread specific, ex: alarm.
- Kernel does not know about user level threads, how to deliver?

- A process may have only one pending alarm, what about several threads calling
alarm?

* Other signals like key strokes are not thread specific:
- Who catch them?
- What if 1 thread changes handlers?
- What if a thread wants to catch a signal while another wants it to kill process?

e Signals are a source of chaos (single- or multi-threaded)

Stack Management

* Kernel provides more stack space in case of
stack overflow.

 But what if the kernel does not know about the
existence of threads?

IS It so dark?

* No, these problems are solvable.

* However, solutions may require redesign of
system calls and rewriting of library
routines, ...etc, while keeping backward
compatibility

* NOTHING is free of charge.

Interprocess Communication (IPC)

* EX: shell pipeline (Is | grep Music)
e 3issues:

1)How to pass info to another process?

2)How two processes do not collide with each other (ex: seat
reservation)?

3)Proper sequencing in case of dependencies.

* The last 2 issues apply equally to threads. (why not the first
one?)

Race Condition

* In some OSs, processes may share some memory (in RAM, kernel
data structure, file).

EXx: Spooler directory.

Spooler
e X =7 directory
e Write in 7 “text”
. Y — 7 4 abc out=4
_ . 5 prog.c
. 7 1 Process A
Write in 7 “data - gl isrosim
. In — 8 7 in=7

Critical Regions (Sections)

* The solution to race condition is to achieve
mutual exclusion protecting critical sections.

A enters critical region

/ /

A leaves critical region

Process A | | ; :
| | | |
| | | |
I | B attempts to I B enters : B leaves
: | enter critical | critical region | critical region
region
I I | I
| |
PrOCeSS B cssecssesesasessesnsessnansssensucns
| (I
| | ki | |
B blocked |
T, T, T, T

Time ———

Critical Regions (cont.)

* Just mutual execution is not enough by itself.

* Conditions for correct and efficient cooperation:
1)Only one process at a time in the critical region.
2)No assumptions about speed or CPU number.

3)No process outside critical region can block another
process.

4)No process should wait forever.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

