

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 5
Thursday 5-11-2020

Chapter 2 (2.2.4 to 2.3.2)

Processes and Threads

User Space Threads
● Thread library entirely in user space, kernel has no idea.
● Can be implemented for an OS with no thread support. (the only type in old

days)
● Threads run on top of run-time system

(a collection of procedures)
● Each process has a thread table managed

by the run-time system.
Table (PC, SP, REGs, state, ...etc)

● At thread switch, thread calls run-time that
handles switching to another ready thread.
This is much faster than calling the kernel
(advantage).
– May have 1 inst. To save/load all registers at one step.

User Space Threads (cont.)
● Advantages:

– Can be implemented for an OS with no thread support.
– No trap, no context switch, no memory cache flush, …

etc at thread switch, just a local procedure.
– Customized scheduling algorithms per process (ex.

Garbage collection thread)
– Scale better (no kernel space needed)

User Space Threads (cont.)
● Problems:

– Blocking system calls (If a thread blocks, the entire process will block)
● Change the read to non-blocking, requires OS changes, undesirable, plus changing other programs.
● Select call checks if the read will block (a jacket or a wrapper). Not very elegant way, changes the

system call library.

– Page faults (similar to the prev.)
– The thread must yield voluntarily (no clock interrupts, no round-robin)

● Run-time system require periodic clock interrupts (messy, overhead, possible interference with another
thread requiring clock interrupt.)

– The biggest problem: programmers use threads mostly for applications with a lot of
(blocking) system calls. If already trapped to OS, the thread switch work is negligible. If the
thread is CPU bound, what’s the point?

Kernel Space Threads
● Thread creation and destruction are

system calls, reflected on the thread
table, managed by the kernel itself
(no run-time).

● All blocking calls are system calls with
greater cost.

● At thread block, the kernel chooses another
thread either from the same process or from
another one.

● To decrease costs, OS recycle threads (not
runnable thread reactivated)
– Recycling possible but not worth it in user level threads.

Kernel Space Threads (cont.)
● Problems:

– What happens with fork?
● If exec is coming, then 1 thread, otherwise duplicate.

– Signals are delivered to processes. Which thread
receives a signal?

● The interested thread registers. But what if more than
one thread register?

Hybrid
● Multiplex user level threads on top of kernel level ones.
● Program chooses how many threads on both levels.
● The most flexible.
● Kernel only knows and schedules kernel level

threads. Multiple level threads
may be multiplexed on top of them.

● User level threads are managed
 like pure user level threads.

● Each kernel thread has a set of
user threads switching to use it.

Scheduler Activations
● Approach by Anderson et al. (1992) to improve

the slowness of kernel level threads.
● Challenging bonus explained next online lecture

by one of you. (for reading only).
– Hint: read the related paper.

Pop-up Threads
● Another bonus, similar to the previous (Are

there any related papers?)

From Single-threaded to Multi-
threaded

● Existing programs usually written to be single-
threaded. Converting them is tricky.

● We will see some example problems.

Thread Globals
● Need for a thread global scope. Ex: errno.

● Prohibit globals!! What about existing SW?

● Private global area/thread → new scoping
level + procedure local and program global.

Thread Globals (cont.)
● How to access those areas? Programming languages do

not know how to express this new scope.
– Allocate a chunk of memory /thread and pass to each procedure.

Not elegant but works.
– New library procedures:

● create_global("bufptr"); //in the heap or special area dedicated
for the calling thread

● set global("bufptr", &buf);
● bufptr = read global("bufptr");

Non-reentrant Procedures
● Examples:

– Sending messages over the network through a buffer.
– Malloc: updating memory usage tables (free chunks linked list)

● Rewriting entire library → not trivial, may introduce
errors.

● A jacket for each procedure (in use bit) blocking multi-
access to the same procedure. → Limits parallelism.

Signals
● Some signal are thread specific, ex: alarm.

– Kernel does not know about user level threads, how to deliver?
– A process may have only one pending alarm, what about several threads calling

alarm?

● Other signals like key strokes are not thread specific:
– Who catch them?
– What if 1 thread changes handlers?
– What if a thread wants to catch a signal while another wants it to kill process?

● Signals are a source of chaos (single- or multi-threaded)

Stack Management
● Kernel provides more stack space in case of

stack overflow.
● But what if the kernel does not know about the

existence of threads?

Is it so dark?
● No, these problems are solvable.
● However, solutions may require redesign of

system calls and rewriting of library
routines, ...etc, while keeping backward
compatibility

● NOTHING is free of charge.

Interprocess Communication (IPC)
● Ex: shell pipeline (ls | grep Music)
● 3 issues:

1)How to pass info to another process?

2)How two processes do not collide with each other (ex: seat
reservation)?

3)Proper sequencing in case of dependencies.

● The last 2 issues apply equally to threads. (why not the first
one?)

Race Condition
● In some OSs, processes may share some memory (in RAM, kernel

data structure, file).
● Ex: Spooler directory.
● X = 7
● Write in 7 “text”
● Y = 7
● Write in 7 “data”
● In = 8

Critical Regions (Sections)
● The solution to race condition is to achieve

mutual exclusion protecting critical sections.

Critical Regions (cont.)
● Just mutual execution is not enough by itself.
● Conditions for correct and efficient cooperation:

1)Only one process at a time in the critical region.

2)No assumptions about speed or CPU number.

3)No process outside critical region can block another
process.

4)No process should wait forever.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

