

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 8
Thursday 19-11-2020

Chapter 2 (2.3.6 to 2.3.10)

Processes and Threads

Mutex
● Simpler version of semaphore (no counting, just 1 or 0).
● Easy and more efficient to implement.
● 2 states: unlocked (0) or locked (any other state).
● 2 operations:

– mutex_lock (successful if initially unlocked, blocked otherwaise).
– mutex_unlock awakes one sleeping process at random.

● As they are simple, easily implemented in user space given TSL or
XCHG.

Mutex (cont.)

Mutex (cont.)
● mutex_trylock()
● With threads sharing is no problem, but what

about processes?
– Share memory in kernel.
– Some OSs allow sharing memory area in user space.
– Share a file.

Futex
● Skipped.

Mutex in Pthreads

Condition Variables

Condition Variables (cont.)

Condition Variables (cont.)

Monitors
● Semaphores are error-prone. Try changing the order.
● Monitor: a collection of procedures, variables and data

structures grouped together (like class), procedures can be
accessed from outside (e.g. public) while variables are not.

● Only one process active on a monitor procedure in a time.
● Handled by the compiler.
● It’s a programming language feature (Not supported in C)
● Condition variables help in blocking whenever needed,

allowing another process to proceed.
● When another process is awakened, what happens to the

original? Suspended, ended (signal must be the last
instruction) or continued.

● A signal may be lost if no one is waiting (use variables to
track).

Monitors (cont.)

Monitors (cont.)

Monitors(cont.)
● Problems:

– Not all languages support them (like c and Pascal).
– Semaphores also are not supported directly, but can be

implemented very easily without the need for compiler
cooperation.

– Work with multiple CPUs sharing the same memory, but not
distributed systems with multiple memories.

● What can we do in this case?

Message Passing
● Interprocess Communication approach.

– send(destination, &message);
– receive(source, &message); //can receive from ANY

● System calls not language constructs, so can be put in
library procedures.

● Receiver can either block waiting for a message or
return with error code.

Message Passing Design Issues
● Issues not faced with semaphores or monitors, specially in case of

communication through networks.
● Message lost:

– Receiver send acknowledgment.

● Acknowledgment lost, duplicate message:
– Add consecutive sequence numbers in messages.

● These are typical issues of networking.
● Naming processes to avoid ambiguity.
● Authentication: how to know the other process is not an imposter.
● If processes are on the same machine, semaphores and monitors are faster.

Message Passing (Producer-Consumer)

Message Passing (Producer-Consumer)

● Assume OS save (buffer) messages till consumed.
● To design message passing:

– Unique addresses for process where they can receive messages directly.
– Mailbox data structure assigned for the process (ex: producer-consumer).
– No buffer at all: sender blocks until receive happens and vice versa.

● Rendezvous: easier to implement, but less flexible.

● Usually usde for parallel programming.
– Ex: MPI (Message-Passing Interface)

Barriers
● Intended for groups of processes rather than 2.
● Synchronize progress, all process wait at the barrier to advance

together.
● Ex: Updating parts of a very large matrix in a loop.

Avoiding Locks
● Section 2.3.10 skipped.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

