

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 16
Sunday 27-12-2020

Chapter 4 (4.1 to 4.2.4)
File Systems

Why we need from long-term storage?

1) Larger size than address space.

2) Non-volatile (does not disappear with process termination or
system crash)

3) Independent from processes (like databases)
● Magnetic disks: used for a long time.
● Solid State Drives (SSD): used increasingly nowadays, faster and
more robust.

● Tapes and optical disks: less performance, used for backup.

A disk
● A disk: Linear sequence of fixed sized blocks with 2 main operations (among
others):
1- Read block k 2- Write block k

● Questions (among others):
1) How to find info?

2) How to provide protection?

3) How to manage free spaces/blocks?

● Processor → process(thread), physical memory → virtual address space,
storage → file.
● The three abstractions are the back one of an OS.

Files and File System
● Logical units of information created by processes.
● Many files exist in any given system (millions?)
● Persistent: deleted only by explicit order from the user.
● Mainly read and written (among other operations).
● Managed by OS (structure, name, access, protection, implementation … etc).
● File System (FS) (Fat16, Fat32, NTFS, ReFS, Ext4 … etc)
● A user is concerned by such things like naming, protection, allowed operations.
● A designer is concerned with such things as free storage management (lists or

bitmap for ex.), sectors and so on.

File Naming
● Abstraction is to shield the user from lower level details.
● Naming rules vary from system to system.

– From 8 to 255 characters, letters, sometimes digits and special characters.
– Distinguish between lowercase and uppercase (as UNIX) or not (as MS-DOS: still in use in

embedded)

● File extension: more info about the file
– MS-DOS: optional, single, 1 to 3 characters
– UNIX: optional, any length, one or more.
– May be just a convenience (like in UNIX) to the user (not OS). A compiler may insist, but not OS.
– Essential when a program can handle many kinds (like compiler)
– May be a meaning and an owner is assigned to extension (like .docx in Windows)

Some file extensions

File Structure
● Files may be structured in any of several

ways.
● Example: an unstructured sequence of bytes.

– OS doesn’t know or care.
– User-level programs impose meaning.
– UNIX & Windows use this.
– More flexibility.

File Structure (cont.)
● A sequence of fixed-length records,

each with some internal structure.
● Record is the unit of read/write.
● Historical, not used as a primary

model currently in general-purpose.

File Structure (cont.)
● A tree of records, not necessarily all

the same length, each containing a
key field in a fixed position in the
record.

● Sorted by key → rapid search.
● When adding, OS decides where to

add.
● Used in large mainframes for

commercial data processing.

File Types
● Many OS support several types:

– Regular files: for user info, like all the previous.
– Directories: system files for FS structure.
– Character special files: to model serial I/O devices

like printers.
– Block special files: to model disks.

Regular Files
● Generally, ASCII or binary.
● ASCII: lines of text. Some systems end lines with carriage

return or line feed. Lines may differ in length.
– Can be displayed and printed as is. Can be edited with any text

editor.
– Can be pipelined between supporting programs.

● Binary: if printed → incomprehensible. Usually, internal
structure known to using programs.

Binary File Ex. (early UNIX executable)

Binary File Ex. (UNIX archive)

File Types (cont.)
● Each OS must recognize at least its executable.
● Strongly typed files cause problems when the

user tries to do something not intended in
design (to protect the user).
– Good for novices, may be frustrating for

experienced.

File Access
● Earlier, all was sequential, read in order only.

– Was suitable to magnetic tapes.

● Random-access files, out of order access, or by key.
– Became possible with disks.
– Required for many systems, like a database(ex: flight

reservation).
– Either read provides a position, or seek transform current

position then read sequentially (Used in UNIX and Windows).

File Attributes (or Metadata)
● Archive flag: reset by

backup process, set by
OS.

● If last access time of
source is after object,
recompile.

● Some old systems
required max. size at
creation. Not nowadays.

File Operations
● Create

– With no data, announce, set attributes

● Delete
– Free disk space

● Open
– Fetch attributes & list of disk addresses into memory

● Close
– Reverse open, OS may enforce max. # of open files.

● Read
– Must provide size and buffer

● Write
– If at the end → size increases. If in the middle →

overwrite.

● Append
● Restricted form of write. May not be

present in some systems.

● Seek
– In random access file, reposition current

pointer.

● Get Attributes
– Used by processes and users.

● Set Attributes
● Rename

– Can copy with a new name and delete
old instead.

Example Program
● Code in Page 274.
● Command copyfile abc xyz

Directories of Folders
● To keep track of files.
● Are actually files.

Single-Level Directory Systems
● One directory (usually called root, but whatever)

contains all files.
● Early personal computers (one users).
● First supercomputer (simplicity).
● Advantages: simple, quick file locating.
● Still in use in some embedded, ex:digital cameras,

portable music players.
● Not suitable for modern use (a lot of files).

Hierarchical Directory Systems
● To group related files

together.
● A hierarchy: a tree of

directories.
● Users can share a file

server, each with his root
directory.

● Nearly all modern FSs.

Path Names
● To identify file names in a directory tree.

1) Absolute Path Name: path from root to file, unique
● Ex: Windows \usr\ast\mailbox UNIX /usr/ast/mailbox MULTICS >usr>ast>mailbox
● The 1st character is the separator → absolute

2) Relative Path Name: in conjunction with working directory or
current directory designated by user.
● All paths not beginning with root are relative to current directory.
● Ex: if the current directory is /usr/ast then /usr/ast/mailbox can be referenced by mailbox
● Each process has its own working directory. A library procedure must be careful whit changing

working directory.

Path Names (cont.)
● Most OSs have special directories:

– “.”: dot: current directory
– “..”:dotdot: parent directory, except

for root (itself).

● Ex: with working directory = /usr/ast,
all the following are the same:
– cp ../lib/dictionary .
– cp /usr/lib/dictionary .
– cp /usr/lib/dictionary dictionary
– cp /usr/lib/dictionary /usr/ast/dictionary

Directory Operations

● Create
– Empty except for . & .., put by OS or

mkdir.

● Delete
– Only if empty. . & .. → empty.

● Opendir
– Ex: for listing.

● Closedir
– To free space.

● Readdir
– Return next entry, read was used but forces knowing

directory structure.

● Rename
● Link

– Hard link: a link from a file to a pathname, so the same
file may appear in multiple directories.

– Symbolic link, a name for a tiny file naming another file.
When opened, OS follows the path. Useful for across
disks or even computers, but less efficient than hard links.

● Unlink
– Remove directory entry. If present only here, delete from

FS, otherwise, only this pathname is deleted. In UNIX,
delete file is actually unlink.

● More variation from OS to OS.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

