

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 12
Sunday 13-12-2020

Chapter 3 (3.1 to 3.2)
Memory Management

Memory Management
● Memory sizes grow, but program sizes grow faster.
● Parkinson’s Law:

– ‘‘Programs expand to fill the memory available to hold
them.’’

● That is why OS has to manage memory very
carefully.

Memory Management
● What we want? Large, Fast, non-Volatile and Cheap memory.

But it is just a dream (for now!), so we have to compromise.
● Memory Hierarchy is the solution (registers, cache, RAM, Disks

and others).
● OS has to manage all of those.
● Memory Manager: Allocate, deallocate and keep track.
● Cache is managed by hardware, Disk will be discussed later. We

focus on RAM, how to abstract it to the programmer?

No Memory Abstraction
● Early computers presented no abstraction, just

the physical memory (a set of addresses
starting from 0) as it is.
– Each address is a cell of bits (commonly 8).
– Ex: MOV REGISTER1,1000

● Hence, only one program in memory.

No Memory Abstraction (cont.)

● 1st is rarely used now, 2nd is used with some handheld and embedded, 3rd with early PC (BIOS).
● 1st and 3rd model may lead to disasters, how?
● Only one process at a time, loaded by OS according to a user command.
● To get parallelism, you may use threads, but:

– We need processes not threads.
– Can such a primitive system support threads?

Multiple Programs with no Abstraction
● Swapping (between memory and disk).
● With special hardware, multiprogramming is possible without

swapping.
● In early IBM 360:

– Divide memory into 2 KB blocks, each assigned 4 bit protection key held in
special registers.

● Ex: 1 MB memory → 512 key → 256 bytes

– PSW has protection key. No process can access memory of another.
– OS only can change keys.

Problem
● The 2nd program will crash

immediately.
● They access absolute

physical memory.
● Solution by IBM-360: static

relocation.
– Slow loading.
– Info about executable (what

is an address?).

Multiple Programs with no Abstraction (cont.)

● No abstraction is still used in embedded and
smart card systems:
– Programs known in advance, not general purpose.

Memory Abstraction: Address Spaces
● Problems with physical memory access:

– If the program can access any address → crash other
programs (maybe OS).

– Difficult for mutliprogramming.

● Two issues to solve:
– Protection
– Relocation

The Notion of an Address Space
● Abstraction of memory for programs to live in.
● An address space is the set of addresses that a process can

use to address memory.
● An address space for each process protected from others (except

in case of communication)
● Ex: telephone numbers, x86 ports, web addresses (.com), IPv4.
● Question is: how 28 means different physical locations in different

programs?

Base and Limit Registers
● Simple version of dynamic

relocation.
● Add base to each address and

compare with limit for protection.
● Ex: JMP 28 → JMP 16412 <= 32764

● Only OS can modify base and limit.

● Intel 8088: no limit, several bases, allowing
for allocation parts separately.

● Disadvantage: ?

Not Enough Memory
● Typically, memory is smaller than the needs of

all processes (Ex: about 50 – 100 processes
start at startup).

● Solution:
– Swapping
– Virtual Memory

Swapping

Swapping (cont.)
● When too many holes → memory fragmentation

– memory compaction.
– Takes a lot of time → not done often. (Ex: 16 seconds to copy 16GB at

8nsec/8 bytes.

● If process size is fixed that would be great.
● What happens when a process wants to grow?

– Move, swap out or kill.

● Add extra space for growth at swapping in (not at swapping out).

Swapping (cont.)

Managing Free Memory
● How to manage memory chunks during

dynamic memory allocation?
– Bitmap
– Free lists

Memory Management with Bitmaps

Memory Management with Bitmaps
● Memory is divided into units with size from few words to several kBs.
● For each unit, a bit is either 0 or 1.
● Smaller allocation unit → larger bitmap.

– Ex: 4 bytes unit: 1 bit → 32n bits of memory: n bits. The map is 1/32 of memory.

● Larger allocation unit → possible waste in the last unit in process.
● Simple: map size depends on memory size and allocation unit size.
● To allocate a k-unit process: search the map for consecutive k 0 bits.
● Searching is slow: the run may stradle word boundaries.

Memory Management with Linked Lists

Memory Management with Linked Lists (cont.)

● Sorted by address. Easier when a process is
terminated or swapped out.

● Double linked list is better, to find the previous.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

