OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 7
Sunday 15-11-2020

Chapter 2 (2.3.4 to 2.3.5)

Processes and Threads



Sleep and Wakeup

* Both solutions require busy waiting.
- Waste CPU time.

— Priority inversion problem: lower priority process
In its critical region.

* Use sleep and wakeup instead.



Producer-Consumer (Bounded-
Buffer)

* Shared buffer between 2 processes (for
simplification).

* Producer sleeps waiting for an empty slot
(awakened by Consumer), Consumer sleeps waiting
for a non-empty slot (awakened by producer).

e | eads to race condition.



Producer-Consumer (cont.)

#define N 100
int count = 0;

void producer(void)

{

int item;

while (TRUE) {
item = produce_item();
if (count == N) sleep();
insert_item(item);
count = count + 1;
if (count == 1) wakeup(consumer);

void consumer(void)

{

int item;

while (TRUE) {
if (count == 0) sleep();
item = remove_item();
count = count — 1;
if (count == N — 1) wakeup(producer);
consume_item(item);

/* number of slots in the buffer =/
/* number of items in the buffer =/

/* repeat forever */

/* generate next item =/

/* if buffer is full, go to sleep */

/* put item in buffer */

/* increment count of items in buffer =/
/* was buffer empty? =/

/* repeat forever */

/* if buffer is empty, got to sleep */

/* take item out of buffer =/

/* decrement count of items in buffer =/
/* was buffer full? */

/* print item */



Producer-Consumer (cont.)

 Producer e Consumer
read count

Insert item

count++

wakeup (consumer)

count == 0? - sleep

sleep



Producer-Consumer (cont.)

 Producer « Consumer
read count

Insert item

count++

Is consumer awake? - wakeup

waiting bit =1

wakeup (consumer)

count == 0?7 - wakeup waiting
bit == 1? don’t sleep

sleep



Producer-Consumer (cont.)

 What about more processes? 16, 32 or more”?
Shall we keep adding more wakeup waiting
bits?



Semaphores (by Dijkstra)

 Semaphore variables to count the number of wakeups.

* Up and down (generalizations of wakeup and sleep)

- Down checks semaphore value, if > 0, decrement and continue.
Otherwise, sleep.

— Checking, changing ans sleep are done as an atomic operation.

- Up increments semaphore, if some process is sleeping waiting for it, it is
waked up and it completed its down operation.

- Incrementing and waking up also is atomic.
- In the original paper P for down and V for up.



Semaphores (by Dijkstra)

#define N 100 /* number of slots in the buffer =/

typedef int semaphore; /* semaphores are a special kind of int =/
semaphore mutex = 1; /* controls access to critical region =/
semaphore empty = MN; /* counts empty buffer slots =/
semaphore full = 0O; /* counts full buffer slots =/

void producer(void)

{

int item;

while (TRUE) { /= TRUE is the constant 1 =/
item = produce_item(); /* generate something to put in buffer =/
down(&empty); /* decrement empty count =/
down{& mutex); /* enter critical region =/
insert_item{(item); /* put new item in buffer =/
up(&mutex); /* leave critical region =/
up(&full); /* increment count of full slots */

void consumer({wvoid)

{

int item;;

while (TRUE) { /* infinite loop */
down{&full); /* decrement full count */
down{& mutex); /= enter critical region =/
item = remove_itemi(); /* take item from buffer =/
up(&mutex); /* leave critical region =/
up(&empty); /* increment count of empty slots */

consume_itemi(item); /* do something with the item */



Semaphores (by Dijkstra)

Binary Semaphores.

To make up and down operations atomic:
- Make them as system calls where OS disables interrupts during them.
- In multiple CPUs case, protect them with a lock variable using TSL or XCHG.

Note that as the operations are short (few instructions) there is no
problem in both solutions.

Semaphores were used for synchronization (full and empty) and for
mutual exclusion (mutex).



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

