

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 7
Sunday 15-11-2020

Chapter 2 (2.3.4 to 2.3.5)

Processes and Threads

Sleep and Wakeup
● Both solutions require busy waiting.

– Waste CPU time.
– Priority inversion problem: lower priority process

in its critical region.

● Use sleep and wakeup instead.

Producer-Consumer (Bounded-
Buffer)

● Shared buffer between 2 processes (for
simplification).

● Producer sleeps waiting for an empty slot
(awakened by Consumer), Consumer sleeps waiting
for a non-empty slot (awakened by producer).

● Leads to race condition.

Producer-Consumer (cont.)

● z

Producer-Consumer (cont.)
● Producer

Insert item
count++
wakeup (consumer)

…

sleep

● Consumer

read count

count == 0? → sleep

Producer-Consumer (cont.)
● Producer

Insert item
count++
Is consumer awake? → wakeup
waiting bit = 1

wakeup (consumer)

…

sleep

● Consumer

read count

count == 0? → wakeup waiting
bit == 1? don’t sleep

Producer-Consumer (cont.)
● What about more processes? 16, 32 or more?

Shall we keep adding more wakeup waiting
bits?

Semaphores (by Dijkstra)
● Semaphore variables to count the number of wakeups.
● Up and down (generalizations of wakeup and sleep)

– Down checks semaphore value, if > 0, decrement and continue.
Otherwise, sleep.

– Checking, changing ans sleep are done as an atomic operation.
– Up increments semaphore, if some process is sleeping waiting for it, it is

waked up and it completed its down operation.
– Incrementing and waking up also is atomic.
– In the original paper P for down and V for up.

Semaphores (by Dijkstra)

Semaphores (by Dijkstra)
● Binary Semaphores.
● To make up and down operations atomic:

– Make them as system calls where OS disables interrupts during them.
– In multiple CPUs case, protect them with a lock variable using TSL or XCHG.

● Note that as the operations are short (few instructions) there is no
problem in both solutions.

● Semaphores were used for synchronization (full and empty) and for
mutual exclusion (mutex).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

