

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 6
Thursday 12-11-2020

Chapter 2 (2.3 to 2.3.3)

Processes and Threads

Interprocess Communication (IPC)
● Ex: shell pipeline (ls | grep Music)
● 3 issues:

1)How to pass info to another process?

2)How two processes do not collide with each other (ex: seat
reservation)?

3)Proper sequencing in case of dependencies.

● The last 2 issues apply equally to threads. (why not the first
one?)

Race Condition
● In some OSs, processes may share some memory (in RAM, kernel

data structure, file).
● Ex: Spooler directory.
● X = 7
● Write in 7 “text”
● Y = 7
● Write in 7 “data”
● In = 8

Critical Regions (Sections)
● The solution to race condition is to achieve

mutual exclusion protecting critical sections.

Critical Regions (cont.)
● Just mutual execution is not enough by itself.
● Conditions for correct and efficient cooperation:

1)Only one process at a time in the critical region.

2)No assumptions about speed or CPU number.

3)No process outside critical region can block another
process.

4)No process should wait forever.

Mutual Execution with Busy Waiting
● Some approaches for achieving mutual

execution.

Disabling Interrupts
● Once a process enters critical region, it disables interrupts.
● How this guarantees mutual execution?
● This works only on single processor. Why?
● Is it wise to give such a power to some process?
● What about the kernel itself?
● This technique is becoming more unsuitable nowadays.

Why?

Lock Variables
//P1

If (lock ==0)

 lock = 1;

 //critical section;

 Lock = 0;

Else wait;

● Does it work?

//P2

If (lock ==0)

 lock = 1;

 //critical section;

 Lock = 0;

Else wait;

Strict Alteration

● Busy waiting → spin lock.

1)Remember rule 3?: No process outside critical
region can block another process. Does it hold here?

●

Peterson’s Solution

The TSL instruction
● In some computers (specially multi CPU)

 TSL RX,LOCK //test and set lock
● Executed entirely at one step (atomically), locking the but to the

memory bus. (different from disable interrupt. How?)
● One possible sol. In the next slide.
● Busy waiting.
● Processes must be cooperating for it to work. How a process

can abuse?

The TSL instruction (cont.)

XCHG instruction
● Similar to TSL, exchanges 2 locations.
● All x68 CPU use it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

