

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 9
Sunday 22-11-2020

Chapter 2 (2.4 to 2.4.2)

Processes and Threads

Scheduling

Scheduling
● Scheduler is the OS part that decides which process (or

thread?) to run next from the set of ready processes (or
threads?), according to a scheduling algorithm.

● Usually, the same questions apply to both processes and
threads.
– If threads are managed by OS, OS schedules per thread

(whatever the process).

● Later, thread specific issues will be discussed.

Intro
● Old batch systems: run the next job on the tape.
● With multiprogramming, scheduler decide whether to run batch or interactive job.

– CPU as a resource is expensive.

● With personal computers, scheduling may be not that much a deal:
– One user, most of the time running one process.
– Computers became faster. Usually, the user speed is the limitation.
– Heavy CPU consumer processes are not the common case.

● With networked servers, scheduling is a big issue.
– Choose a house keeping process or a user request?

● In smartphones and sensor network nodes, again scheduling is important:
– Usually there is a need to optimize power consumption.

● Take care of the context switch overhead:
– Switch to kernel mode, save process state (registers, memory map…), choose another process, reload

the new process state, start the new process.
– Cache memory flush (twice).

Process Behavior
● CPU-bound vs I/O-bound processes (w.r.t. CPU burst time).
● CPU advances faster than disks → more I/O-bound processes.
● Scheduling should favor I/O-bound processes, to keep disk busy.

When to Schedule
● New process creation: parent or child?
● Process exit. (if no-one is ready, system idle process)
● Process blocks (I/O, semaphore).

– Reason of block may affect (run the other process that is blocking the important
one). But, does the schedule know these info?

● At interrupts: the blocked on I/O process or the interrupted?
● H/W clock periodic interrupts (or a number of interrupts).
● Nonpreemptive vs preemptive scheduling.

– Preemptive requires clock interrupts as a must.

Categories of Scheduling Algorithms
● Different environments, applications, Oss with different goals/criteria.

1) Batch:
• Common in business world (banks, insurance com.), no users waiting.

• Nonpreemptive or preemptive with long time periods.
• Reduce switches → enhances performance.

• General and applicable in other situations → good to know.

2) Interactive:
● Preemption is necessary: prevent a process from hogging the CPU (intentionally or due to a bug).
● Servers fall into this category.

3) Real Time:
● Usually, preemption not needed, processes cooperate to further the task (not general purpose).

Scheduling Algorithm Goals

Scheduling Algorithm Goals (all systems)

● Fairness:
– All processes get a chance (no starving)
– Priorities: safety control should run first in all cases.

● Policy enforcement:
– What is intended is what really happens (safety waits?!!)

● Balance:
– A good mix of CPU-bound and I/O bound to keep all busy and avoid

long waits.

Scheduling Algorithm Goals (batch systems)

● Throughput:
– More processes per time unit is better.

● Turnaround:
– Process finishes faster is better.

● May contradict. (ex: run shorter jobs first to enhance throughput →
may lead to starvation and infinity turnaround time)

● CPU utilization:
– Good to know to decide when new resources are needed.

Scheduling Algorithm Goals (interactive systems)

● Response time:
– A user request should be serviced before a

background process.

● Proportionality:
– Relates to the user expectation (that me be wrong).
– Ex: sending a large file vs breaking a connection.

Scheduling Algorithm Goals (real-time systems)

● Meeting deadlines:
– Must (should) meet all (most) of deadlines.

● Predictability:
– Specially multimedia (not fatal, but quality suffers)
– Specially sound.
– Scheduling should be predictable and regular.

Scheduling in Batch Systems
● Remember:

– General Requirements:
● Fairness.
● Policy enforcement.
● Balance.

– Specific Requirements:
● Throughput.
● Turnaround.
● CPU utilization.

First-Come, First-Served
● The simplest.
● Non-preemptive.
● A queue of ready processes.
● Easy to understand, easy to implement.
● Fair (in theory).
● What about the balance between compute-bound and I/O-bound processes?

– Ex: 1 compute-bound process with 1 sec compute burst with a number of I/O-bound
processes that need 1000 disk accesses.

– FCFS vs preempt at 10 msec.

Shortest Job First
● Non-preemptive
● Assumes priory knowledge of running times (may be possible with recurring jobs and profiling)
● Optimize turnaround time
● Ex:

– Turnaround times are:
● FCFS: 8, 12, 16, 20 ---- avg: 14
● SJF: 4, 8, 12, 20 ---- avg: 11

● SJF is provably optimal:
– Average turnaround time = (4a + 3b + 2c + d)/4 → a contributes most, it should be the shortest, and so on.
– Only when they are available simultaneously:
– Ex:

● Order A, B, C, D, E → 4.6
● Order B, C, D, E, A → 4.4

A B C D E

Arrival 0 0 3 3 3

execution 2 4 1 1 1

Shortest Remaining Time Next
● Preemptive version of Sjf.
● When a newer shorter process arrives, its time is compared to the

currently running process which is preempted if needed.
● Provides better service to new short processes.
● Ex:

– A(2), B(1), C(1), D(1), E(1), B(3)
– Avg turnaround = (2 + 9 + 1 + 2 + 3)/5

 = 3.4
A B C D E

Arrival 0 0 3 3 3

execution 2 4 1 1 1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

