OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 8
Thursday 19-11-2020

Chapter 2 (2.3.6 to 2.3.10)

Processes and Threads

Mutex

Simpler version of semaphore (no counting, just 1 or 0).
Easy and more efficient to implement.
2 states: unlocked (0) or locked (any other state).

2 operations:
- mutex_lock (successful if initially unlocked, blocked otherwaise).
- mutex_unlock awakes one sleeping process at random.

As they are simple, easily implemented in user space given TSL or
XCHG.

Mutex (cont.)

mutex_lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex_lock | try again

ok: RET | return to caller; critical region entered

mutex_unlock:
MOVE MUTEX,#0 | store a 0 in mutex
RET | return to caller

Mutex (cont.)

* mutex_trylock()

* With threads sharing is no problem, but what
about processes?
- Share memory in kernel.
- Some OSs allow sharing memory area in user space.
— Share a file.

Futex
* Skipped.

Mutex In Pthreads

Thread call Description

Pthread_muitex_init Create a mutex

Pthread_mutex_destroy | Destroy an existing mutex

Pthread_mutex_lock Acquire a lock or block

Pthread_mutex_trylock Acquire a lock or fall

Pthread_mutex_unlock Release a lock

Condition Variables

Thread call

Description

Pthread_cond_init

Create a condition variable

Pthread_cond_destroy

Destroy a condition variable

Pthread_cond_walit

Block waiting for a signal

Pthread_cond_signal

Signal another thread and wake it up

Pthread_cond_broadcast

Signal multiple threads and wake all of them

Condition Variables (cont.)

#include <stdio.h>
#include <pthread.h>

#define MAX 1000000000 /* how many numbers to produce */
pthread_mutex_t the__mutex;

pthread_cond_t condc, condp; /* used for signaling */

int buffer = 0; /* buffer used between producer and consumer */
void *producer(void *ptr) /* produce data */

{ inti;

for (i=1; i <= MAX; i++) {
pthread _mutex_lock(&the _mutex); /* get exclusive access to buffer */
while (buffer != 0) pthread_cond_wait(&condp, &the_mutex);
buffer = i; /* put item in buffer */
pthread_cond_signal(&condc); /* wake up consumer */
pthread__mutex_unlock(&the _mutex); /* release access to buffer */

}
pthread_exit(0);

}

void *consumer(void *ptr) /* consume data */
{ int i;
for(i=1;i <= MAX; i++) {

pthread_mutex_lock(&the _mutex); /* get exclusive access to buffer */
while (buffer ==0) pthread_cond_ wait(&condc, &the__mutex);
buffer = O; /* take item out of buffer */
pthread__cond_signal(&condp); /* wake up producer */
pthread_mutex_unlock(&the_mutex);/* release access to buffer */

}
pthread__exit(0);

Condition Variables (cont.)

int main(int argc, char **argv)

{

pthread_t pro, con;
pthread_mutex_init(&the_mutex, 0);
pthread_cond_init(&condc, 0);
pthread_cond_init(&condp, 0);
pthread_create(&con, 0, consumer, 0);
pthread_create(&pro, 0, producer, 0);
pthread_join(pro, 0);
pthread_join(con, 0);
pthread_cond_destroy(&condc);
pthread_cond_destroy(&condp);
pthread_mutex_destroy(&the_mutex);

Monitors

Semaphores are error-prone. Try changing the order.

Monitor: a collection of procedures, variables and data
structures grouped together (like class), procedures can be
accessed from outside (e.g. public) while variables are not.

Only one process active on a monitor procedure in a time.
Handled by the compiler.
It's a programming language feature (Not supported in C)

Condition variables help in blocking whenever needed,
allowing another process to proceed.

When another process is awakened, what happens to the
original? Suspended, ended (signal must be the last
instruction) or continued.

A signal may be lost if no one is waiting (use variables to
track).

monitor example
integer i;
condition c;

procedure producer();

end;

procedure consumer();

end;
end monitor:

Monitors (

monitor ProducerConsumer

cont.)

condition full, empty;
integer count;

procedure insert(item: integer);
begin

if count = N then wait(full);

insert_item(item),

count = count + 1;

if count = 1 then signal(empty)
end;

function remove: integer;
begin
if count = 0 then wait(empty);
remove = remove __item,
count = count — 1;
if countr = N — 1 then signal(full)
end;

count := 0;
end monitor;

procedure producer;

begin

end;

while true do
begin
item = produce_item;
ProducerConsumer.insert(item)
end

procedure consumer,

begin

end;

while true do

begin
item = ProducerConsumer.remove;
consume _item(item)

end

Monitors (cont.)

public class ProducerConsumer {
static final int N = 100; // constant giving the buffer size
static producer p = new producer(); // instantiate a new producer thread
static consumer ¢ = new consumer(); // instantiate a new consumer thread
static our_monitor mon = new our_monitor(); // instantiate a new monitor

public static void main(String args[]) {
p.start(); // start the producer thread
cstart(); // start the consumer thread

}

static class producer extends Thread {
public void run() {// run method contains the thread code
int item;
while (true) { // producer loop
item = produce_item();
mon.insert(item);
}
}

private int produce_item() {...} // actually produce

static class consumer extends Thread {
public void run() {run method contains the thread code
int item;
while (true) { // consumer loop
item = mon.remove();
consume_item (item);
}
}

private void consume_item(int item) { ... }// actually consume

static class our_monitor { // this is a monitor
private int buffer[] = new int[N];
private int count =0, lo = 0, hi=0; // counters and indices

public synchronized void insert(int val) {
if (count == N) go_to_sleep(); // if the buffer is full, go to sleep
buffer [hi] = val; // insert an item into the buffer
hi=(hi+1) % N; // slot to place next item in
count = count + 1; // one more item in the buffer now

if (count == 1) notify(); /1 if consumer was sleeping, wake it up
}
public synchronized int remove() {
int val;
if (count == 0) go_to_sleep(); //if the buffer is empty, go to sleep
val = buffer [lo]; // fetch an item from the buffer
lo=(lo+1)%N; // slot to fetch next item from
count = count - 1; // one few items in the buffer
if (count == N — 1) notify(); // if producer was sleeping, wake it up
return val;
}

private void go_to_sleep() { try{wait();} catch(InterruptedException exc) {};}

}

Monitors(cont.)

* Problems:
- Not all languages support them (like ¢ and Pascal).

— Semaphores also are not supported directly, but can be
Implemented very easily without the need for compiler

cooperation.

- Work with multiple CPUs sharing the same memory, but not
distributed systems with multiple memories.

 \WWhat can we do in this case?

Message Passing

* Interprocess Communication approach.
- send(destination, &message);

— receive(source, &message); //can receive from ANY

* System calls not language constructs, so can be put Iin
library procedures.

* Recelver can either block waiting for a message or
return with error code.

Message Passing Design Issues

Issues not faced with semaphores or monitors, specially in case of
communication through networks.

Message lost:
- Receiver send acknowledgment.

Acknowledgment lost, duplicate message:
- Add consecutive sequence numbers in messages.

These are typical issues of networking.

Naming processes to avoid ambiguity.
* Authentication: how to know the other process is not an imposter.
* If processes are on the same machine, semaphores and monitors are faster.

Message Passing (Producer-Consumer)

void producer(void)

{
int item;
message m; /* message buffer */
while (TRUE) {
item = produce_item(); /* generate something to put in buffer */
receive(consumer, &m); /* wait for an empty to arrive */
build_message(&m, item); /* construct a message to send */
send(consumer, &m); /* send item to consumer */
}
}
void consumer(void)
{
int item, i;
message m;

for (i = 0; i < N; i++) send(producer, &m); /* send N empties */
while (TRUE) {

receive(producer, &m); /* get message containing item */
item = extract_item(&m); /* extract item from message */
send(producer, &m); /* send back empty reply */
consume_item(item); /* do something with the item */

Message Passing (Producer-Consumer)

* Assume OS save (buffer) messages till consumed.

* To desigh message passing:
— Unique addresses for process where they can receive messages directly.
- Mailbox data structure assigned for the process (ex: producer-consumer).

— No buffer at all: sender blocks until receive happens and vice versa.
* Rendezvous: easier to implement, but less flexible.

* Usually usde for parallel programming.
- Ex: MPI (Message-Passing Interface)

Barriers

* Intended for groups of processes rather than 2.

* Synchronize progress, all process wait at the barrier to advance
together.

* Ex: Updating parts of a very large matrix in a loop.

/(@D @ @
Process © (B} 5 5 5
© E |8 H{ P

................. @ @

Time —— Time —— Time ——

Avoiding Locks
* Section 2.3.10 skipped.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

