OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 16
Sunday 27-12-2020

Chapter4 (4.11t04.2.4)
File Systems

Why we need from long-term storage?

1) Larger size than address space.

2) Non-volatile (does not disappear with process termination or
system crash)

3) Independent from processes (like databases)
* Magnetic disks: used for a long time.

e Solid State Drives (SSD): used increasingly nowadays, faster and
more robust.

* Tapes and optical disks: less performance, used for backup.

A disk

* A disk: Linear sequence of fixed sized blocks with 2 main operations (among
others):
1- Read block k 2- Write block k
* Questions (among others):
1)How to find info?
2)How to provide protection?
3)How to manage free spaces/blocks?
* Processor — process(thread), physical memory - virtual address space,
storage - file.
* The three abstractions are the back one of an OS.

Files and File System

Logical units of information created by processes.

Many files exist in any given system (millions?)

Persistent: deleted only by explicit order from the user.

Mainly read and written (among other operations).

Managed by OS (structure, name, access, protection, implementation ... etc).
File System (FS) (Fatl6, Fat32, NTFS, ReFS, Ext4 ... etc)
A user is concerned by such things like naming, protection, allowed operations.

* A designer is concerned with such things as free storage management (lists or
bitmap for ex.), sectors and so on.

File Naming

e Abstraction is to shield the user from lower level details.

* Naming rules vary from system to system.
- From 8 to 255 characters, letters, sometimes digits and special characters.

— Distinguish between lowercase and uppercase (as UNIX) or not (as MS-DOS: still in use in
embedded)

* File extension: more info about the file

MS-DOS: optional, single, 1 to 3 characters

UNIX: optional, any length, one or more.

May be just a convenience (like in UNIX) to the user (not OS). A compiler may insist, but not OS.
Essential when a program can handle many kinds (like compiler)

May be a meaning and an owner is assigned to extension (like .docx in Windows)

Some file extensions

Extension Meaning

.bak Backup file

.C C source program

.gif Compuserve Graphical Interchange Format image
.hip Help file

.ntml World Wide Web HyperText Markup Language document
Jpg Still picture encoded with the JPEG standard
.mp3 Music encoded in MPEG layer 3 audio format
.mpg Movie encoded with the MPEG standard

.0 Object file (compiler output, not yet linked)

pdf Portable Document Format file

ps PostScript file

tex Input for the TEX formatting program

Axt General text file

ZIp

Compressed archive

File Structure

* Files may be structured in any of several 1 Byte
ways. d

 Example: an unstructured sequence of bytes.
- OS doesn’t know or care.

- User-level programs impose meaning.
- UNIX & Windows use this.
— More flexibility.

File Structure (cont.)

* A sequence of fixed-length records,
each with some internal structure.

e Record Is the unit of read/write.

* Historical, not used as a primary
model currently in general-purpose.

File Structure (cont.)

A tree of records, not necessarily all
the same length, each containing a
key field in a fixed position in the
record.

Sorted by key - rapid search.

When adding, OS decides where to
add.

Used in large mainframes for
commercial data processing.

" Ant

Fox

Pig ||

Cat " Cow || Dog

" Goat

Lion

owl ||

Pony

Rat "VVonn

" Hen

Ibis

Lamb

File Types

 Many OS support several types:
- Regqular files: for user info, like all the previous.

- Directories: system files for FS structure.

— Character special files: to model serial I1/O devices
like printers.

- Block special files: to model disks.

Regular Files

* Generally, ASCII or binary.
* ASCII: lines of text. Some systems end lines with carriage
return or line feed. Lines may differ in length.

— Can be displayed and printed as is. Can be edited with any text
editor.

— Can be pipelined between supporting programs.

e Binary: if printed — incomprehensible. Usually, internal
structure known to using programs.

Binary File Ex. (early UNIX executable)

Magic number

Text size

Data size

BSS size

Symbol table size

Header

Entry point

Flags

- Text -

g Data o

A Relocation
bits

by

A Symbol n
i table

Binary File Ex. (UNIX archive)

Module
name
Header
Date
Object Owner
module
Protection
Size
Header
Object
module
Header
Object
module

File Types (cont.)

 Each OS must recognize at least its executable.

e Strongly typed files cause problems when the
user tries to do something not intended In
design (to protect the user).

- Good for novices, may be frustrating for
experienced.

File Access

* Earlier, all was sequential, read in order only.
- Was suitable to magnetic tapes.

* Random-access files, out of order access, or by key.
- Became possible with disks.

- Required for many systems, like a database(ex: flight
reservation).

- Either read provides a position, or seek transform current
position then read sequentially (Used in UNIX and Windows).

File Attributes (or Metadata)

* Archive flag: reset by

backup process, set by

OS.
e |f last access time of

source is after object,

recompile.

 Some old systems
required max. size at

creation. Not nowadays.

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags

0 for unlocked: nonzero for locked

Record length

Number of bytes in a record

Key position

Offset of the key within each record

Key length

Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file was last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

File Operations

Create

- With no data, announce, set attributes

Delete

- Free disk space

Open

- Fetch attributes & list of disk addresses into memory
Close

- Reverse open, OS may enforce max. # of open files.
Read

— Must provide size and buffer

Write

- If at the end - size increases. If in the middle —
overwrite.

Append

* Restricted form of write. May not be
present in some systems.

Seek

- In random access file, reposition current
pointer.

Get Attributes
- Used by processes and users.
Set Attributes

Rename

— Can copy with a new name and delete
old instead.

Example Program

 Code in Page 274.
e Command copyfile abc xyz

Directories of Folders

* To keep track of files.
e Are actually files.

Single-Level Directory Systems

One directory (usually called root, but whatever) " |~—Root directory
contains all files. '
Early personal computers (one users). A ® ©®

First supercomputer (simplicity).

Advantages: simple, quick file locating.

 Still in use in some embedded, ex:digital cameras,
portable music players.

* Not suitable for modern use (a lot of files).

Hierarchical Directory Systems

* To group related files ~—Root directory
together. e B\C

 Ahierarchy: a tree of (JJED @
directories. 2l® 8] A2l

* Users can share a file (®) C C
server, each with his root e @Q@ @Q@*_ eaits

directory.

* Nearly all modern FSs.

Path Names

* To identify file names in a directory tree.

1) Absolute Path Name: path from root to file, unique
* Ex: Windows \usr\ast\imailbox UNIX /usr/ast/mailbox MULTICS >usr>ast>mailbox
* The 1st character is the separator - absolute

2) Relative Path Name: in conjunction with working directory or
current directory designated by user.
« All paths not beginning with root are relative to current directory.
 Ex: if the current directory is lusrlast then Jusrlast/imailbox can be referenced by mailbox

» Each process has its own working directory. A library procedure must be careful whit changing
working directory.

Path Names (cont.)

* Most OSs have special directories:

“.”: dot: current directory

- “.":dotdot: parent directory, except

* Ex: with working directory = /usr/ast,

for root (itself).

all the following are the same:

cp ../lib/dictionary .

cp /usr/lib/dictionary .

cp /usr/lib/dictionary dictionary

cp /usr/lib/dictionary /usr/ast/dictionary

bin

etc

bin

—~— Root directory

etc

lib

usr

tmp

(

lib

N

usr tmp

ast

jim

ast

;

lib jim

- - lust/jim
dict.

Directory Operations
 More variation from OS to OS.

Create

- Empty except for . & .., put by OS or
mkdir.

Delete

- Only if empty. . & .. - empty.
Opendir

- Ex: for listing.

Closedir

- To free space.

Readdir

- Return next entry, read was used but forces knowing
directory structure.

Rename

Link

- Hard link: a link from a file to a pathname, so the same
file may appear in multiple directories.

- Symbolic link, a name for a tiny file naming another file.
When opened, OS follows the path. Useful for across
disks or even computers, but less efficient than hard links.

Unlink

- Remove directory entry. If present only here, delete from
FS, otherwise, only this pathname is deleted. In UNIX,
delete file is actually unlink.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

