OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 12
Sunday 13-12-2020

Chapter 3 (3.1 to 3.2)
Memory Management

Memory Management

 Memory sizes grow, but program sizes grow faster.

e Parkinson’s Law:

- “Programs expand to fill the memory available to hold
them.”

 That is why OS has to manage memory very
carefully.

Memory Management

What we want? Large, Fast, non-Volatile and Cheap memory.
But it is just a dream (for now!), so we have to compromise.

Memory Hierarchy is the solution (registers, cache, RAM, Disks
and others).

OS has to manage all of those.
Memory Manager: Allocate, deallocate and keep track.

Cache is managed by hardware, Disk will be discussed later. We
focus on RAM, how to abstract it to the programmer?

No Memory Abstraction

* Early computers presented no abstraction, just
the physical memory (a set of addresses
starting from 0) as it is.

— Each address is a cell of bits (commonly 8).
- Ex: MOV REGISTER1,1000

* Hence, only one program in memory.

No Memory Abstraction (cont.)

User
program

Operating
system in
RAM

(a)

1st is rarely used now, 2 is used with some handheld and embedded, 31 with early PC (BIOS).

OxFFF ...

Operating
system in
ROM

Device
drivers in ROM

User
program

User
program

Operating
system in
RAM

(b)

1st and 3 model may lead to disasters, how?

Only one process at a time, loaded by OS according to a user command.

To get parallelism, you may use threads, but:

- We need processes not threads.

— Can such a primitive system support threads?

()

Multiple Programs with no Abstraction

« Swapping (between memory and disk).

* With special hardware, multiprogramming is possible without
swapping.

* In early IBM 360:

— Divide memory into 2 KB blocks, each assigned 4 bit protection key held in
special registers.

* Ex: 1 MB memory - 512 key - 256 bytes
- PSW has protection key. No process can access memory of another.

- OS only can change keys.

Problem

* The 2n program will crash
iImmediately.

* They access absolute
physical memory.

e Solution by IBM-360: static
relocation.
- Slow loading.

- Info about executable (what
IS an address?).

0

ADD

MOV

JMP 24

(a)

16380

28
24
20
16
12

16380

CMP

28

24

20

16

12

JMP 28

(b)

0

CMP

JMP 28

ADD

MOV

JMP 24

(c)

32764

16412
16408
16404
16400
16396
16392
16388
16384
16380

28
24
20
16
12

Multiple Programs with no Abstraction (cont.)

* No abstraction is still used in embedded and
smart card systems:

- Programs known in advance, not general purpose.

Memory Abstraction: Address Spaces

* Problems with physical memory access:

- If the program can access any address - crash other
programs (maybe OS).

— Difficult for mutliprogramming.
* Two Issues to solve:

- Protection
— Relocation

The Notion of an Address Space

* Abstraction of memory for programs to live In.

 An address space is the set of addresses that a process can
use to address memory.

* An address space for each process protected from others (except
In case of communication)

* EX: telephone numbers, x86 ports, web addresses (.com), IPv4.

* Question is: how 28 means different physical locations in different
programs?

Base and Limit Registers

e Simple version of dynamic Umnre/;ster B
relocation. CY

» Add base to each address and o
compare with limit for protection.

* EX: IMP 28 — JMP 16412 <= 32764 e

* Only OS can modify base and limit. e ﬁé@ 29

* Intel 8088: no limit, several bases, allowing -
for allocation parts separately. 2

* Disadvantage: ? N -

()

Not Enough Memory

* Typically, memory Is smaller than the needs of
all processes (Ex: about 50 — 100 processes
start at startup).

e Solution:

- Swapping
- Virtual Memory

Swapping

Time —
///
% C C C C C
B B B B //

% A

%) /

A A A
D D D
Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

(a)

(b)

(c)

(d)

(€)

(f)

(9)

Swapping (cont.)

 When too many holes - memory fragmentation
- memory Compaction.

- Takes a lot of time - not done often. (Ex: 16 seconds to copy 16GB at
8nsec/8 bytes.

* If process size is fixed that would be great.

* What happens when a process wants to grow?
- Move, swap out or Kill.

* Add extra space for growth at swapping in (not at swapping out).

Swapping (cont.)

Operating
system

(@)

» Room for growth

> Actually in use

» Room for growth

> Actually in use

A-Program

Operating
system

(b)

} Room for growth

} Room for growth

Managing Free Memory

* How to manage memory chunks during
dynamic memory allocation?

- Bitmap
- Free lists

Memory Management with Bitmaps

//// | 1 IB 1 | | CI | (/I 1 | I? | | IEI 1 1
24

\W

11111111

(b)

Memory Management with Bitmaps

Memory is divided into units with size from few words to several kBs.
For each unit, a bit is either O or 1.

Smaller allocation unit — larger bitmap.
- EXx: 4 bytes unit: 1 bit - 32n bits of memory: n bits. The map is 1/32 of memory.

Larger allocation unit — possible waste in the last unit in process.
Simple: map size depends on memory size and allocation unit size.
To allocate a k-unit process: search the map for consecutive k O bits.
Searching is slow: the run may stradle word boundaries.

Memory Management with Linked Lists

A”?f/ B c b D E f
L1 1 1 rD <0 r e 1

8 16 24
(a)

P05—+H53—+P86—+P144—>

CH1153f2 —+—>|P|20| 6| 4+—|P|26(3| —4+—=>|H|29| 3| X

/N f

Hole Starts Length Process
at 18 2
()

Memory Management with Linked Lists (cont.)

* Sorted by address. Easier when a process Is
terminated or swapped out.

* Double linked list Is better, to find the previous.

o o o o
0] 0] ® @
@] (@] 9] 9]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

