

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 11
Sunday 29-11-2020

Chapter 2 (2.4.4 to 2.5.2)

Processes and Threads

Scheduling in Real Time Systems
● Time is paramount.
● Usually: receive external input, process it and act within a constrained time.
● Ex: compact disc player, patient monitoring in a hospital intensive-care unit, the autopilot in an aircraft, and

robot control in an automated factory.
● Hard vs. Soft real time systems.
● Program divided into processes (known and predictable in advance), usually short lived (within 1 sec). The

scheduler is responsible for meeting deadlines.
● Periodic vs aperiodic events.
● Schedulable system:

– Ex: Processes periods: 100, 200, 500 msec ---- time per event: 50, 30, 100
– 0.5 + 0.15 + 0.2 <= 1 → OK
– Fourth process with period 1 sec: Ok as long as lower than 150 msec time per event.
– Assumption: switching time is negligible.

● Static scheduling (in advance perfect information about work to be done and deadlines), vs. dynamic
scheduling.

∑
i=1

m C i
Pi

⩽1

Policy vs. Mechanism
● What if a parent process has info about its children and can

take decisions about their scheduling? Scheduler does not
accept input from processes.

● Sol: separate policy from mechanism. Parameterized
algorithm where parameters are filled by processes.

● Ex: Database application
– Mechanism: Priority scheduling.
– Policy: Parent process assigns values to children.

Thread Scheduling
● User-level threads:

– Threads scheduler (within the
threads runtime system)
schedules threads.

– Anti-social threads do not affect
other processes.

– Commonly round robin or priority.
– No clock to interrupt, but they are

supposedly cooperating.

Thread Scheduling (cont.)
● Kernel-level threads:

– The system scheduler
chooses the next
thread to run.

– May (or may not) take
into account the
process of this thread.

Thread Scheduling (cont.)
● Switching is faster in user-level threads.
● A thread blocking blocks only itself (not the entire process) in kernel-

level threads.
● Switching to a thread within the same process is faster (memory map

and cache … etc) →
– The kernel may prefer this choice if the two threads are equally important.

● In user level threads, scheduling may be according to the application
needs (like the server example with dispatcher and workers). In kernel-
level threads, this is not possible (except for priorities).

Classical IPC Problems

The Dining Philosophers Problem
● Presented and solved by

Dijkstra in 1965, then used to
test new synchronization
solutions.

● A philosopher either thinks or
eats (spaghetti with two
forks!). When hungry, he tries
to acquire forks in order.

The obvious (WRONG) Solution

● The problem is …….

● One modification: pick left fork, look for right fork. If not available put down left fork and try again after some time (say after 5
seconds).

● Again the problem is …….

● Starvation

● Does random waiting time solve the problem? Ex: sending a packet over the network vs safety control in a nuclear power plant.

Another Starvation-Free solution

down(mutex)

up(mutex)

● The problem is ……..

Deadlock-Free with max. Parallelism

Main code for each philosopher

Deadlock-Free with max. Parallelism

The Readers & Writers Problem
● Models access to a database (as example).
● Possible multiple readers at the same time, but

only one writer at a time.

One Possible Solution

The Readers & Writers Problem
● What is the problem with the prev. sol.?

The Readers & Writers Problem
● Writers may starve when there is a continuous

stream of arriving readers.
● One solution is that: whenever there is a waiting

writer, subsequently arriving readers are not
admitted, they wait till the writer finishes its
work.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

