

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 13
Thursday 17-12-2020

Chapter 3 (3.2 to 3.3.3)
Memory Management

Allocation Algorithms
● First Fit
● Next Fit

– Slightly worse.

● Best Fit
– Slower.
– More waste.

● Worst Fit
– Not that good.

● Ex: A space of 2 is needed. Then another 2.

Allocation Algorithms Optimizations
● Keeping separate lists for processes and holes → enhances allocation time and hurts and

complicates deallocation.
● If holes list sorted by size → best fit and first fit are equal, next fit is pointless.
● Keep holes list in the holes themselves. Instead of 3 words and a bit for each node, 2 words (size

and next).
● Quick Fit:

– Separate lists for common sizes.
– A table where each entry as a pointer to a list of a specific size (4, 8, 12).
– 21 KB can be put into 20 list or in odd sizes list.
– Finding a hole is really fast.
– Merging deallocated holes is really complicated.

● With no merging, quick severe fragmantation.

Virtual Memory
● Constant need for more memory (time-sharing, multimedia … etc.) for one process and

for mutiple processes.
● Swapping is slow (seconds to swap 1 GB out and seconds to swap in).
● Large programs problem is old (scientific applications).

– In 1960s, overlays were used, managed by overlay manager.
– OS swaps them, but the programmer defines them.

● Time consuming, boring and error prone.

● Virtual memory was the solution.
– A program is divided into small chunks called pages.
– Only needed pages reside in memory, while others stay on disk.
– A generalization of base and limit with smaller memory chunks.

Paging

Paging (cont.)
● Virtual addresses of 16 bits are generated. The

virtual address space is from 0 to 64KB-1.
● Memory itself is 32KB.
● The whole program is kept in disk.
● Virtual address space consists of pages, while

physical memory consists of page frames, both
of the same size (here =4KB).

● We have here 16 pages and 8 page frames.
● Transfers are in whole pages.
● A mix of page sizes can be used in some systems

(x86-64 has 4KB for users, 2 MB, 1GB for kernel)

Paging (cont.)
● 0K-4K → from 0 to 4095

4K-8K → from 4096 to 8191
● MOV REG,0

– Virtual address 0 (in page 0 mapped to frame 2)
is sent to MMU, which translates it to 8192, puts
the address on memory bus. Memory is not
aware.

● MOV REG,8192 → MOV REG,24567
● Address 20500 → 12308
● Present/absent bit is used to identify

present/absent pages.

Paging (cont.)
● MOV REG,32780 → Page fault

trap to OS.
– OS picks a little-used frame,
– Writes it back to disk (if needed),
– Fetches the requested page into this

frame,
– Updates the map (the evacuated

and the newly fetched)
– And restarts the instruction.

MMU (why powers of 2?)
● 8196 (0010000000000100)
● Split into:

– 4 bit page number (we have 16 pages) used
to index into the page table.

– 12 bit offset (page size = 4KB)

● The 4 bit page number is replaced by 3 bit
page frame number (we have 8 frames).

● The resulting address is put into output
register, then to memory bus.

● Page table is like a function, input: page
number, output: frame number.

Page Tables Entries
● Layout differs from machine to machine, but the info are similar.
● 32 bits is a common size.
● Protection bits for permissions:

– 1 bit read only or read/write
– 3 bits one for each (read, write, execute)

● Modified: sometimes called dirty bit.
● Referenced: used for replacement decision.
● Caching disabled: important for pages mapped to device registers.
● Info about disk is managed by OS, not by hardware.

Paging Implementation
● 2 Issues:

– Mapping speed
– Page table size (if virtual address space is large)

● Mapping Speed
– One, two or maybe more memory access per instruction.
– If instruction takes 1nsec, mapping should be under 0.2 nsec.

● Page table size
– With 32 bit virtual address space, and 4KB pages → 1 million pages.
– Can you think about 64bit address space?!!
– Each process has its table!

● Single page table of array fast hardware registers.
– No memory reference for mapping.
– Loaded with context switch → slows down switching dramatically.
– Expensive specially with large tables.

● Entire table in memory with 1 register pointing to its start.
– At switching, only change register.
– Memory references for mapping → slow.

Translation Lookaside Buffers
● An instruction accessing memory slows

execution by half → not acceptable.
● Noticed: a lot of accesses to a few of pages.
● TLB (Translation Lookaside Buffer) or

associative memory

Translation Lookaside Buffers (cont.)
● Usually in MMU.
● Small number of entries (8 here, not more

than 256)
● Like page table with extra page number.
● Ex: 19, 20, 21: loop code, 129, 130: data,

140: indexing, 860, 861: stack.
● At page lookup, MMU looks in TLB first.

– If hit: check permissions, and load from there.
– If miss: ordinary page table + bring entry into

TLB, copy modified bit of the evicted entry
into page table.

Software TLB Management
● Skipped

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

