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Memory Management

 Memory sizes grow, but program sizes grow faster.

e Parkinson’s Law:

- “Programs expand to fill the memory available to hold
them.”

 That is why OS has to manage memory very
carefully.



Memory Management

What we want? Large, Fast, non-Volatile and Cheap memory.
But it is just a dream (for now!), so we have to compromise.

Memory Hierarchy is the solution (registers, cache, RAM, Disks
and others).

OS has to manage all of those.
Memory Manager: Allocate, deallocate and keep track.

Cache is managed by hardware, Disk will be discussed later. We
focus on RAM, how to abstract it to the programmer?



No Memory Abstraction

* Early computers presented no abstraction, just
the physical memory (a set of addresses
starting from 0) as it is.

— Each address is a cell of bits (commonly 8).
- Ex: MOV REGISTER1,1000

* Hence, only one program in memory.



No Memory Abstraction (cont.)
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1st and 3 model may lead to disasters, how?

Only one process at a time, loaded by OS according to a user command.

To get parallelism, you may use threads, but:

- We need processes not threads.

— Can such a primitive system support threads?

()




Multiple Programs with no Abstraction

« Swapping (between memory and disk).

* With special hardware, multiprogramming is possible without
swapping.

* In early IBM 360:

— Divide memory into 2 KB blocks, each assigned 4 bit protection key held in
special registers.

* Ex: 1 MB memory - 512 key - 256 bytes
- PSW has protection key. No process can access memory of another.

- OS only can change keys.



Problem

* The 2n program will crash
iImmediately.

* They access absolute
physical memory.

e Solution by IBM-360: static
relocation.
- Slow loading.

- Info about executable (what
IS an address?).
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Multiple Programs with no Abstraction (cont.)

* No abstraction is still used in embedded and
smart card systems:

- Programs known in advance, not general purpose.



Memory Abstraction: Address Spaces

* Problems with physical memory access:

- If the program can access any address - crash other
programs (maybe OS).

— Difficult for mutliprogramming.
* Two Issues to solve:

- Protection
— Relocation



The Notion of an Address Space

* Abstraction of memory for programs to live In.

 An address space is the set of addresses that a process can
use to address memory.

* An address space for each process protected from others (except
In case of communication)

* EX: telephone numbers, x86 ports, web addresses (.com), IPv4.

* Question is: how 28 means different physical locations in different
programs?



Base and Limit Registers

e Simple version of dynamic Umnre/;ster B
relocation. CY

» Add base to each address and o
compare with limit for protection.

* EX: IMP 28 — JMP 16412 <= 32764 e

* Only OS can modify base and limit. e ﬁé@ 29

* Intel 8088: no limit, several bases, allowing -
for allocation parts separately. 2

* Disadvantage: ? N -

()



Not Enough Memory

* Typically, memory Is smaller than the needs of
all processes (Ex: about 50 — 100 processes
start at startup).

e Solution:

- Swapping
- Virtual Memory



Swapping
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Swapping (cont.)

 When too many holes - memory fragmentation
- memory Compaction.

- Takes a lot of time - not done often. (Ex: 16 seconds to copy 16GB at
8nsec/8 bytes.

* If process size is fixed that would be great.

* What happens when a process wants to grow?
- Move, swap out or Kill.

* Add extra space for growth at swapping in (not at swapping out).



Swapping (cont.)
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Managing Free Memory

* How to manage memory chunks during
dynamic memory allocation?

- Bitmap
- Free lists



Memory Management with Bitmaps
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Memory Management with Bitmaps

Memory is divided into units with size from few words to several kBs.
For each unit, a bit is either O or 1.

Smaller allocation unit — larger bitmap.
- EXx: 4 bytes unit: 1 bit - 32n bits of memory: n bits. The map is 1/32 of memory.

Larger allocation unit — possible waste in the last unit in process.
Simple: map size depends on memory size and allocation unit size.
To allocate a k-unit process: search the map for consecutive k O bits.
Searching is slow: the run may stradle word boundaries.



Memory Management with Linked Lists
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Memory Management with Linked Lists (cont.)

* Sorted by address. Easier when a process Is
terminated or swapped out.

* Double linked list Is better, to find the previous.
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