

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 10
Thursday 26-11-2020

Chapter 2 (2.4.3)

Processes and Threads

Scheduling in Interactive Systems
● Remember:

– General Requirements:
● Fairness.
● Policy enforcement.
● Balance.

– Specific Requirements:
● Response time.
● Proportionality.

Round-Robin Scheduling
● One of the oldest, simplest, fairest, and most widely used.
● Preemptive.
● Each process is preempted after a quantum time of execution.
● If the processes finishes before end of quantum → switching.
● The choice of quantum length vs switching time,

– ex: 4 msec quantum with 1 msec switching time → 20% waste
– Quantum = 100 msec → 1% waste
– Ex: 50 server requests, the last one may wait for 5 sec (unacceptable)
– Quantum > mean execution burst time → most switches are not preempting.

● Conclusion:
– Too short quantum → too much switches → lower CPU efficiency.
– Too long quantum → poor responsiveness, specially with short interactive requests.
– 20-50 msec is usually a reasonable choice.

Priority Scheduling
● Round robin assumes that all processes are equally important. What about VIPs?

(users or processes)
– President process vs student process.
– Email sending process vs video displaying process.

● The process with the highest assigned priority is run first.
● To prevent high priority processes from monopolizing CPU:

– Lower priority periodically (ex: at each clock tick)
– Assign a quantum, after which the next high priority process is run.

● Priorities are assigned statically:
– General vs captain process, 100$ vs 70$ process.
– Nice command in UNIX: voluntarily reduce my priority. (who may use that?)

● Or dynamically:
– I/O-bound processes get higher priorities. Ex: priority = 1/f where f = the fraction used of last

quantum.

Priority Scheduling (cont.)
● Priority classes:

– Each class has a priority.
– Priority scheduling between classes, round-robin within each class.
– Lower classes may starve.

Multiple Queues
● CTSS system:

– One process in memory → very long switching time → sol: long quantum to CPU-
bound processes once in a while → worse response time for others.

– Priority classes where 1st class execute for 1 quantum, 2nd class for 2 quanta, … etc.
Processes move down after each run.

– Ex: 100 quanta process: 1, 2, 4, 8, 18, 32, 64(37) → only 7 switches instead of 100
→ moving down in priority, more time for interactive short processes.

– To avoid punishing forever, if a process gets a carriage return (enter key) stroke, it is
moved to the highest priority (it is getting interactive).

● What about that scheming user who discovered the trick?
● What looks good does not necessarily run well.

Shortest Process Next
● Cycles of wait for command, execute command.
● Assume that execution of each command is a separate ‘‘job’’.
● How to decide which is the shortest?
● One approach: estimate based on past behavior:

– Estimated = T0 , Measured = T1

Tnew = a T0 + (1-a) T1

– A determines if history is forgotten quickly or not.

– If a=0.5 (which is easy to implement)→ T0 , T0 /2 + T1 /2, T0 /4 + T1 /4 + T2 /2, T0 /8 + T1 /8 +
T2 /4 + T3 /2

– This technique sometimes called aging.

Guaranteed Scheduling
● Make a promise (to a user for example) and stick to it.
● Example promise: Each user (each process in a single

user system) gets a fair share of the CPU time (1/n of
CPU cycles).
– Compute the ratio: (what the process actually got since

creation) / (what it is entitles to: time since creation / n)
– The process with lowest ratio is run till it reaches the next low

ratio.

Lottery Scheduling
● Easier to implement than guaranteed scheduling.
● Each process holds a number of lottery tickets. The system periodically chooses a

lottery number. The winner process gets the CPU. (ex: choose 50 times/second,
giving 20 msec of CPU prize).

● The fraction of tickets a process holds affects the probability of winning. In the long
run, it is almost accurate.

● Advantages:
– Highly responsive: new coming processes can win soon.
– Cooperating processes may exchange tickets. Ex: client and server processes.
– Solve problems in some difficult situations. Ex: video streaming processes with different frame

rates.

Fair-Share Scheduling
● Assume User 1 with 9 processes and User 2 with 1

process → User 1 gets 90% of CPU time.
● Take into account the owner of the process when

scheduling.
● Ex: User 1 (A, B, C, D) & User 2 (E) with round robin

– %50 to 50%: A E B E C E D E A E B E C E D E …
– User 1 twice User 2: A B E C D E A B E C D E ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

