

OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 4
Sunday 1-11-2020

Chapter 2 (2.2.1 to 2.2.3)

Processes and Threads

Threads
● Traditional: single process with single thread.
● Now: quasi-parallel threads sharing address space (miniprocess).
● Reasons:

1) Parallelizable activities within an application (some block).
● Easier programming model, separate processes not suitable.

2) Lighter, easier, faster (10-100 times).
● Dynamic and rapid change in threads number.

3) Performance: cpu and I/O mix → faster application.

4) With multiple CPUs → real parallelism.

Threads Examples
● Word processor:

● Editing large book 800 pages in 1 file, delete in page 1,
go to page 600 --> delay.

● Threads for : user interaction + reformatting + saving
● 1 process & 3 processes won’t work

here. Why?

1 process: blocking interaction while
saving or interrupt-driven complex model.

3 processes: no shared address space
(document).

Threads Examples (cont.)
● Spreedsheet:

● Threads: computations, interaction, saving.

● Large data applications:
● Threads: reading (to in buffer), processing (to out buffer),

writing.
● Useful only if blocking a thread not entire process.

Threads Examples (cont.)
● Web server:

● Cache of common pages (ex: home)
● Threads: dispatcher, (awaken) worker

● Single thread server on a dedicated

machine → idle CPU.

● Non-blocking read with a table for request
and signals or interrupts for replies,
mimicking threads the hard way, losing the
sequential model. (finite state machines).

Model Characteristics

Threads Parallelism, blocking system calls

Single-threaded process No parallelism, blocking system calls

Finite-state machine Parallelism, nonblocking system calls,
interrupts

The Classical Thread Model
● Resource grouping vs. execution.
● A process groups related resources to manage easily:

– Code, data, files, children, pending alarms, signal handlers, accounting info, … etc.

● A thread is an entity of execution:
– Program counter, registers, stack.

● Multithreading:
– multiple threads (lightweight processes)
– Analogy: multiple processes in a computer sharing CPU, memory, ...etc. multiple threads

in an application sharing address space, … etc.
– Some CPUs support threads directly → faster switching.

The Classical Thread Model (cont.)
● CPU switches rapidly

between threads →
illusion of parallelism.

● Threads share global
variables, no protection:
– Not possible, not necessary. They

are from the same application,
cooperating not fighting.

– Use processes for unrelated jobs, threads for parts of the same job.

● Thread states: running, blocked (waiting for external event or another
thread), ready, terminated.

● Each thread calls different procedures, hence has its own stack.

The Classical Thread Model (cont.)
● Usually, process starts with 1 thread, which creates others.
● thread_create with the starting procedure name, returning the new

thread’s thread identifier.
● Sometimes, thread hierarchy, but not usually.
● thread_exit, thread_join, thread_yield, waiting, announcing.
● Complications: ex: does the child process has the same number of

threads as the parent process? What if a thread closes a file being read
by another thread? What if 2 threads start allocating memory?
– Be careful when programming multithreaded apps.

POSIX Threads
● Pthreads: IEEE standard:

– Over 60 function calls.

– Each thread has: identifier, set of registers (including PC), a
structure of attributes (stack size, scheduling parameters,
others).

pthread_create Takes procedure name, return tid

pthread_exit Stop thread, release stack

pthread_join Wait for another thread to finish, tid as a parameter

pthread_yield Voluntarily release CPU

pthread_attr_init Create attributes structure, initialize it by defaults

pthread_attr_destroy Remove, free memory, does not affect the thread

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

