OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 4
Sunday 1-11-2020

Chapter 2 (2.2.1 to 2.2.3)

Processes and Threads

Threads

e Traditional: single process with single thread.

* Now: quasi-parallel threads sharing address space (miniprocess).
* Reasons:

1) Parallelizable activities within an application (some block).
» Easier programming model, separate processes not suitable.
2) Lighter, easier, faster (10-100 times).
* Dynamic and rapid change in threads number.
3)Performance: cpu and I/O mix — faster application.
4)With multiple CPUs - real parallelism.

Threads Examples

Word processor:

* Editing large book 800 pages in 1 file, delete in page 1,
go to page 600 --> delay.

* 1 process & 3 processes won
here. Why?

1 process: blocking interaction while
saving or interrupt-driven complex model.

3 processes: no shared address space e D
(document).

Threads Examples (cont.)

* Spreedsheet:
* Threads: computations, interaction, saving.
* Large data applications:

* Threads: reading (to in buffer), processing (to out buffer),
writing.

* Useful only if blocking a thread not entire process.

Threads Examples (cont.)

 Web server:

o . while (TRUE) { while (TRUE) {
Cache of common pages (ex. home) get_next_request(&buf); wait_for_work(&buf)
e Threads: dispatcher (awaken) worker handoff_work(&buf); look _for_page_in_cache(&buf, &page);
’ } if (page_not_in_cache(&page)
» Single thread server on a dedicated read_page_from_disk(&buf, &page);

return_page(&page);
machine - idle CPU. }
(a) (b)

Web server process

* Non-blocking read with a table for request
and signals or interrupts for replies,

mimicking threads the hard way, losing the l 3
sequential model. (finite state machines). Dispatcher thread
Model Characteristics e slésa?:;
Threads Parallelism, blocking system calls Wl pageiashs
Single-threaded process No parallelism, blocking system calls A _
Finite-state machine Parallelism, nonblocking system calls, el } ians

interrupts Network

connection

The Classical Thread Model

« Resource grouping vs. execution.

* A process groups related resources to manage easily:
- Code, data, files, children, pending alarms, signal handlers, accounting info, ... etc.

* Athread is an entity of execution:
- Program counter, registers, stack.

* Multithreading:
— multiple threads (lightweight processes)

— Analogy: multiple processes in a computer sharing CPU, memory, ...etc. multiple threads
in an application sharing address space, ... etc.

- Some CPUs support threads directly — faster switching.

The Classical Thread Model (cont.)

CPU switches rapidly
between threads -
illusion of parallelism. =

Threads share global
variables, no protection:

Kernel
— Not possible, not necessary. They space

are from the same application,
cooperating not fighting.

— Use processes for unrelated jobs, threads for parts of the same job.

Process 1 Process2 Process 3
\ I

Process

L oL
R

|

W

Thread

{ Kernel

Kernel

(a)

(b)

Thread states: running, blocked (waiting for external event or another

thread), ready, terminated.

Each thread calls different procedures, hence has its own stack.

The Classical Thread Model (cont.)

Usually, process starts with 1 thread, which creates others.

thread create with the starting procedure name, returning the new
thread’s thread identifier.

Sometimes, thread hierarchy, but not usually.
thread exit, thread join, thread yield, waiting, announcing.

Complications: ex: does the child process has the same number of
threads as the parent process? What if a thread closes a file being read
by another thread? What if 2 threads start allocating memory?

- Be careful when programming multithreaded apps.

POSIX Threads

e Pthreads: IEEE standard:
- Qver 60 function calls.

- Each thread has: identifier, set of registers (including PC), a
structure of attributes (stack size, scheduling parameters,

others).
pthread create Takes procedure name, return tid
pthread_exit Stop thread, release stack
pthread_join Wait for another thread to finish, tid as a parameter
pthread_yield Voluntarily release CPU
pthread_attr_init Create attributes structure, initialize it by defaults

pthread_attr destroy Remove, free memory, does not affect the thread

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

