OPERATING SYSTEMS

by
Marwa Yusuf

Lecture 11
Sunday 29-11-2020

Chapter 2 (2.4.4 to 2.5.2)

Processes and Threads

Scheduling in Real Time Systems

Time is paramount.
Usually: receive external input, process it and act within a constrained time.

Ex: compact disc player, patient monitoring in a hospital intensive-care unit, the autopilot in an aircraft, and
robot control in an automated factory.

Hard vs. Soft real time systems.

Program divided into processes (known and predictable in advance), usually short lived (within 1 sec). The
scheduler is responsible for meeting deadlines.

Periodic vs aperiodic (r—:;lvents.

Schedulable system: Z Q <1

i=1 P;

1

Ex: Processes periods: 100, 200, 500 msec ---- time per event: 50, 30, 100
05+0.15+0.2<=1 5 OK
Fourth process with period 1 sec: Ok as long as lower than 150 msec time per event.

— Assumption: switching time is negligible.

Static scheduling (in advance perfect information about work to be done and deadlines), vs. dynamic
scheduling.

Policy vs. Mechanism

* What if a parent process has info about its children and can
take decisions about their scheduling? Scheduler does not
accept input from processes.

* Sol: separate policy from mechanism. Parameterized
algorithm where parameters are filled by processes.

* Ex: Database application
- Mechanism: Priority scheduling.
- Policy: Parent process assigns values to children.

Thread Scheduling

e User-level threads: Process A Process B
] Order in which
- Threads scheduler (within the threads run N\ l
threads runtime system) Y
schedules threads. 5 Run-ime é1 ;z 23 2 é é é
- Anti-social threads do not affect KA
other processes. thread = =
. . . _/ \/
— Commonly round robin or priority. Z
- No clock to interrupt, but they are 1 Kernel picks a process
supposedly cooperating. Possible: A1, A2, A3, A1, A2, A3

Not possible: A1, B1, A2, B2, A3, B3

Thread Scheduling (cont.)

o Kernel_level threads Process A Process B
- The system scheduler

chooses the next
thread to run.
- May (or may not) take

|nt0 account the 1 Kernel picks a thread E
process of this thread. Possible: A1, A2, A3, AT, A2, A3

Also possible: A1, B1, A2, B2, A3, B3

Thread Scheduling (cont.)

Switching is faster in user-level threads.

A thread blocking blocks only itself (not the entire process) in kernel-
level threads.

Switching to a thread within the same process is faster (memory map
and cache ... etc) -

— The kernel may prefer this choice if the two threads are equally important.

In user level threads, scheduling may be according to the application
needs (like the server example with dispatcher and workers). In kernel-
level threads, this is not possible (except for priorities).

Classical IPC Problems

The Dining Philosophers Problem

* Presented and solved by
Dijkstra in 1965, then used to
test new synchronization
solutions.

* A philosopher either thinks or
eats (spaghetti with two
forks!). When hungry, he tries
to acquire forks in order.

The obvious (WRONG) Solution

#define N 5 /* number of philosophers */

void philosopher(int i) /* i: philosopher number, from 0 to 4 */

{

while (TRUE) {

think(); /* philosopher is thinking */
take_fork(i); /* take left fork */
take_fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

The problem s

One modification: pick left fork, look for right fork. If not available put down left fork and try again after some time (say after 5
seconds).

Again the problem s
Starvation

Does random waiting time solve the problem? Ex: sending a packet over the network vs safety control in a nuclear power plant.

Another Starvation-Free solution

#define N 5 /* number of philosophers */
void philosopher(int i) /* i. philosopher number, from 0 to 4 */
{
while (TRUE) {
think(); /* philosopher is thinking */
down(mutex) take _fork(i); /* take left fork */
take_fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
up(mutex)} put_fork((i+1) % N); /* put right fork back on the table */
}

* The problemis

Deadlock-Free with max. Parallelism

#define N 5

#define LEFT (i+N-1)%N
#define RIGHT (i+1)%N
#define THINKING O

#define HUNGRY 1

#define EATING 2

typedef int semaphore;

int state[N];

semaphore mutex = 1;

semaphore s[N];
Main code for each philosopher

/* number of philosophers */

/* number of i’'s left neighbor */

/* number of i's right neighbor */

/* philosopher is thinking */

/* philosopher is trying to get forks */
/* philosopher is eating */

/* semaphores are a special kind of int */
/* array to keep track of everyone’s state */
/* mutual exclusion for critical regions */

/* one semaphore per philosopher */

void philosopher(int i)
{
while (TRUE) {
think();
take _forks(i);
eat();
put_forks(i);

/* i: philosopher number, from 0 to N-1 */

/* repeat forever */

/* philosopher is thinking */

/* acquire two forks or block */
/* yum-yum, spaghetti */

/* put both forks back on table */

Deadlock-Free with max. Parallelism

void take_forks(int i)

{
down(&mutex);
state[i] = HUNGRY;
test(i);
up(&mutex);
down(&sl[i]);

}

void put_forks(i)

{
down(&mutex);
state[i] = THINKING;
test(LEFT);
test(RIGHT);
up(&mutex);

}

/* i: philosopher number, from 0 to N-1 */

/* enter critical region */

/* record fact that philosopher i is hungry */
/* try to acquire 2 forks */

/* exit critical region */

/* block if forks were not acquired */

/* i: philosopher number, from 0 to N—1 */

/* enter critical region */

/* philosopher has finished eating */
/* see if left neighbor can now eat */
/* see if right neighbor can now eat */
/* exit critical region */

void test(i) /* i: philosopher number, from 0 to N-1 */

{

if (state[i] == HUNGRY && state[LEFT] |= EATING && state[RIGHT] != EATING) {

state[i] = EATING;

up(&sfi]);

The Readers & Writers Problem

* Models access to a database (as example).

* Possible multiple readers at the same time, but
only one writer at a time.

One Possible Solution

void reader(void)
{
while (TRUE) {

down(&mutex);
rc=rc+1;
if (rc == 1) down(&db);
up(&mutex);
read_data_base();
down(&mutex);
rc=rc—1;
if (rc == 0) up(&db);
up(&mutex);
use_data_read();

void writer(void)
{
while (TRUE) {
think_up_data();
down(&db);
write_data_base();
up(&db);

/* repeat forever */

/* get exclusive access to rc */

/* one reader more now */

/* if this is the first reader ... */

/* release exclusive access to rc */
/* access the data */

/* get exclusive access to rc */

/* one reader fewer now */

/* if this is the last reader ... */

/* release exclusive access to rc */
/* noncritical region */

/* repeat forever */

/* noncritical region */

/* get exclusive access */

/* update the data */

/* release exclusive access */

The Readers & Writers Problem

* What Is the problem with the prev. sol.?

The Readers & Writers Problem

* Writers may starve when there Is a continuous
stream of arriving readers.

* One solution Is that: whenever there Is a waiting
writer, subsequently arriving readers are not
admitted, they wait till the writer finishes its
work.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

